首页 | 本学科首页   官方微博 | 高级检索  
     

增强型朴素贝叶斯产
作者姓名:王实 高文
作者单位:中国科学院计算技术研究所,北京,100080
摘    要:朴素贝叶斯是一种分类监督学习方法。在理论上,应用其前提为例子的属性值独立于例子的分类属性。这个前提在实际应用中过于严格,常常得不到满足,即使是这样,在违反该前提的情况下,朴素贝叶斯学习方法仍然取得了很大的成功。近来,一种改进的朴素贝叶斯方法,增强(Boost-ing),受到广泛的关注,AdaBoost方法是其主要方法。当AdaBoost方法被用于联合几个朴素贝叶斯分类器时,其在数学上等价于一个具有稀疏编码输入,单隐层节点,sigmoid激活函数的反馈型神经网络。

关 键 词:神经网络 朴素贝叶斯学习 学习算法
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号