首页 | 本学科首页   官方微博 | 高级检索  
     


Molten salt dynamic sealing synthesis of MAX phases (Ti3AlC2, Ti3SiC2 et al.) powder in air
Affiliation:State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
Abstract:Since the synthesis of non-oxidized ceramic and alloy powders requires both high temperature and oxygen insulation conditions, here we demonstrate a cost-efficient molten salt sealing/shielded synthesis method with dynamic gas tightness. Compared to conventional synthesis method, it can prevent the loss of reaction materials at high temperature, cut off the connection between reacting material and outside air, and does not require long-time ball milling mixing treatment or provision of applied pressing before or during heating. Only low-cost salts (e.g., NaCl, KCl), a few minutes of raw material mixing, and regular heating molds are required to obtain high-purity (>96 wt%), micron-sized Ti3AlC2 and Ti3SiC2 powders with narrow size distribution, which significantly decreased the complexity and production costs in the synthesis process. The effect of temperature and raw material content on the products were investigated. The mechanism of diffusion reaction between reactants in molten salt environment was analyzed. The new method developed here was also applicable to Ti2AlC, V2AlC and Cr2AlC MAX phases, as well as provided new ideas for the preparation of other MXenes precursors with certain stoichiometric ratios, air-sensitive materials and nanopowders.
Keywords:MAX phases  Powder synthesis  Molten salt  Dynamic liquid sealing
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号