首页 | 本学科首页   官方微博 | 高级检索  
     


Intelligent data structures selection using neural networks
Authors:Gabriela Czibula  Istvan Gergely Czibula  Radu Dan Găceanu
Affiliation:1. Department of Computer Science, Babe?-Bolyai University, Cluj-Napoca, Romania
Abstract:
It is well known that abstract data types represent the core for any software application, and a proper use of them is an essential requirement for developing a robust and efficient system. Data structures are essential in obtaining efficient algorithms, having a major importance in the software development process. Selecting and creating the appropriate data structure for implementing an abstract data type can greatly impact the performance and the efficiency of the software systems. It is not a trivial problem for a software developer, as it is hard to anticipate all the use scenarios of the deployed application, and a static selection before the system’s execution is, generally, not accurate. In this paper, we are focusing on the problem of dynamic selection of efficient data structures for abstract data types implementation using a supervised learning approach. In order to dynamically select the most suitable representation for an aggregate according to the software system’s current execution context, a neural network will be used. We experimentally evaluate the proposed technique on a case study, emphasizing the advantages of the proposed model in comparison with existing similar approaches.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号