首页 | 本学科首页   官方微博 | 高级检索  
     

基于R学习的合同网实时调度模型
引用本文:赵良辉,熊作贞. 基于R学习的合同网实时调度模型[J]. 计算机工程与应用, 2014, 0(10): 221-226,237
作者姓名:赵良辉  熊作贞
作者单位:五邑大学经济管理学院,广东江门529020
基金项目:广东省自然科学基金资助项目(No.8452902001001552)。
摘    要:提出一种融入合同网运行机制的R学习方法,以此方法为核心构造Agent形成具有学习能力的实时调度模型。模型以最小化作业累计平均流动比为主要目标,同时借助对强化学习报酬的设计减小机器负载的不均衡性,实现对调度过程的双重优化;构造实时调度实例投入测试的结果证明了模型的绩效。另外,一个包含强化学习Agent与无学习Agent的混合机器环境被构建并测试其性能,测试结果表明:在Agent之间借助强化学习过程形成了某种隐性的合作,正是这种合作保证了高质量实时调度方案的输出。

关 键 词:R学习  合同网  多Agent合作  实时调度

Real-time contract-net-protocol scheduling model based on R-learning
ZHAO Lianghui,XIONG Zuozhen. Real-time contract-net-protocol scheduling model based on R-learning[J]. Computer Engineering and Applications, 2014, 0(10): 221-226,237
Authors:ZHAO Lianghui  XIONG Zuozhen
Affiliation:( School of Economics & Management, Wuyi University, Jiangmen, Guangdong 529020, China)
Abstract:This paper proposes a real-time scheduling model based on contract net protocol structure employing reinforcement learning agents. To this end, an R-learning procedure is elaborated and embedded in machine agents’decision process, enabling them to treat bid-invitations in more complicated way than in a simple contract net protocol environment. Efficiency of the proposed method is verified through experiments in a simulated real-time scheduling environment. Furthermore, the performance of mixed machine groups which comprises both reinforcement learning agents and non-reinforcement-learning agents shows that there is spontaneous implicit teamwork occurring between reinforcement learning agents, and this teamwork guarantees high quality output of the scheduling model.
Keywords:R-learning  contract net protocol  multi-agent cooperation  real-time schedule
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号