首页 | 本学科首页   官方微博 | 高级检索  
     


Splitting a Delaunay Triangulation in Linear Time
Authors:Chazelle   Devillers   Hurtado   Mora   Sacristan   Teillaud
Affiliation:(1) Computer Science Department, Princeton University, 35 Olden Street, Princeton, NJ 08544, USA. chazelle@cs.princeton.edu. http://ftp.cs.princeton.edu/~chazelle/., US;(2) INRIA, BP93, 06902 Sophia-Antipolis, France. Olivier.Devillers@sophia.inria.fr, Monique.Teillaud@sophia.inria.fr. www-sop.inria.fr/prisme/., FR;(3) Departamento de Matemàtica Aplicada II, Universidad Politècnica de Catalunya, Pau Gargallo 5, 08028 Barcelona, Spain. hurtado@ma2.upc.es, mora@ma2.upc.es, vera@ma2.upc.es. www-ma2.upc.es/~geomc/., ES
Abstract:Abstract. Computing the Delaunay triangulation of n points requires usually a minimum of Ω(n log n) operations, but in some special cases where some additional knowledge is provided, faster algorithms can be designed. Given two sets of points, we prove that, if the Delaunay triangulation of all the points is known, the Delaunay triangulation of each set can be computed in randomized expected linear time.
Keywords:. Computational geometry   Delaunay triangulation   Voronoi diagrams   Randomized algorithms.
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号