首页 | 本学科首页   官方微博 | 高级检索  
     


Exploring the surface sensitivity of TOF-secondary ion mass spectrometry by measuring the implantation and sampling depths of Bi(n) and C60 ions in organic films
Authors:Muramoto Shin  Brison Jeremy  Castner David G
Affiliation:National ESCA and Surface Analysis Center for Biomedical Problems, University of Washington, Seattle, Washington 98195, USA.
Abstract:
The surface sensitivity of Bi(n)(q+) (n = 1, 3, 5, q = 1, 2) and C(60)(q+) (q = 1, 2) primary ions in static time-of-flight secondary ion mass spectrometry (TOF-SIMS) experiments were investigated for molecular trehalose and polymeric tetraglyme organic films. Parameters related to surface sensitivity (impact crater depth, implantation depth, and molecular escape depths) were measured. Under static TOF-SIMS conditions (primary ion doses of 1 × 10(12) ions/cm(2)), the 25 keV Bi(1)(+) primary ions were the most surface sensitive with a molecular escape depth of 1.8 nm for protein films with tetraglyme overlayers, but they had the deepest implantation depth (~18 and 26 nm in trehalose and tetraglyme films, respectively). The 20 keV C(60)(+2) primary ions were the second most surface sensitive with a slightly larger molecular escape depth of 2.3 nm. The most important factor that determined the surface sensitivity of the primary ion was its impact crater depth or the amount of surface erosion. The most surface sensitive primary ions, Bi(1)(+) and C(60)(+2), created impact craters with depths of 0.3 and 1.0 nm, respectively, in tetraglyme films. In contrast, Bi(5)(+2) primary ions created impact craters with a depth of 1.8 nm in tetraglyme films and were the least surface sensitive with a molecular escape depth of 4.7 nm.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号