融合行为和遗忘因素的贝叶斯知识追踪模型研究 |
| |
作者姓名: | 黄诗雯 刘朝晖 罗凌云 赵忠源 王璨 |
| |
作者单位: | 南华大学 计算机学院,湖南 衡阳421001;南华大学 计算机学院,湖南 衡阳421001;南华大学 创新创业学院,湖南 衡阳421001 |
| |
基金项目: | 湖南省教育厅基金资助项目(18C0413);南华大学学位与研究生教育教改课题(2017JG014);2020年湖南省普通高等学校教学改革研究项目(HNJG-2020-0477) |
| |
摘 要: | 贝叶斯知识追踪模型(Bayesian knowledge tracing,BKT)被用于智能教学系统中追踪学习者的知识状态并预测其掌握水平和未来表现.由于BKT容易忽视记忆遗忘现象,以及未考虑学习行为对表现结果产生的影响,导致模型预测结果与实际情况出现偏差.针对此问题,提出了一种融合学习者的行为和遗忘因素的贝叶斯知识追踪模型(behavior-forgetting Bayesian knowledge tracing,BF-BKT).首先,采用决策树算法处理学习行为数据,引入行为节点;然后初始化遗忘参数并赋值,更新学习者知识掌握水平的算法;最后,利用ASSISTMENTS提供的公开数据集对相关模型的预测精度进行对比.实验验证,BF-BKT能够达到更好的预测精度.
|
关 键 词: | 贝叶斯网络 知识追踪 学习行为 记忆遗忘 预测精度 |
收稿时间: | 2020-10-02 |
修稿时间: | 2021-06-17 |
本文献已被 万方数据 等数据库收录! |
| 点击此处可从《计算机应用研究》浏览原始摘要信息 |
|
点击此处可从《计算机应用研究》下载全文 |
|