首页 | 本学科首页   官方微博 | 高级检索  
     

基于分组卷积和特征图级联的轻量级目标检测
引用本文:杨贤志,周宁宁. 基于分组卷积和特征图级联的轻量级目标检测[J]. 计算机应用研究, 2021, 38(5): 1590-1594. DOI: 10.19734/j.issn.1001-3695.2020.05.0154
作者姓名:杨贤志  周宁宁
作者单位:南京邮电大学计算机学院,南京210023;国电南瑞科技股份有限公司,南京211106
基金项目:智能电网保护和运行控制国家重点实验室开放课题(201610,20169);国家自然科学基金资助项目(61170322,61373065,61302157)。
摘    要:针对Pelee轻量级目标检测网络中参数量和计算量较多、检测精度较差等缺陷,提出了基于分组卷积和特征图级联的轻量级目标检测网络GCPelee。首先,利用分组卷积替换检测模块中的标准卷积形式以减少模型参数量和计算量;其次,在检测模块上应用特征图级联,将感受野较大的特征图包含的信息传递至感受野较小的特征图,提升后者的感受野大小。实验结果表明,优化后的GCPelee模型参数量和计算量均得到减少,检测精度得到了提升。

关 键 词:目标检测  轻量级  分组卷积  特征图级联  GCPelee
收稿时间:2020-05-20
修稿时间:2021-04-09

Light-weight object detection network based on group convolution and feature maps cascade
Yang Xianzhi and Zhou Ningning. Light-weight object detection network based on group convolution and feature maps cascade[J]. Application Research of Computers, 2021, 38(5): 1590-1594. DOI: 10.19734/j.issn.1001-3695.2020.05.0154
Authors:Yang Xianzhi and Zhou Ningning
Affiliation:(School of Computer Science,Nanjing University of Posts&Telecommunications,Nanjing 210023,China;NARI Technology Co.Ltd.,Nanjing 211106,China)
Abstract:To solve the shortcomings such as a large number of parameters,a large number of FlOPs and poor detection accuracy in the Pelee light-weight object detection network,this paper proposed an improved version named GCPelee based on grouped convolution and feature maps cascade.Firstly,it reduced the amount of model parameters and FLOPs by replacing normal convolution in the detection module with group convolution.Secondly,it applied feature maps cascade on the detection module to transmitted the information contained in the feature maps with a large receptive field to the feature maps with a small one,which would enlarge the receptive field of the latter.The experimental results show that the GCPelee model gets higher detection accuracy with less parameters and less FLOP.
Keywords:object detection  light-weight  group convolution  feature maps cascade  GCPelee
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号