首页 | 本学科首页   官方微博 | 高级检索  
     

基于迁移学习和批归一化的菜肴图像识别方法
引用本文:郭心悦,胡沁涵,刘纯平,杨季文. 基于迁移学习和批归一化的菜肴图像识别方法[J]. 计算机应用与软件, 2021, 38(3): 124-133. DOI: 10.3969/j.issn.1000-386x.2021.03.019
作者姓名:郭心悦  胡沁涵  刘纯平  杨季文
作者单位:苏州大学计算机科学与技术学院 江苏 苏州 215006;苏州大学计算机科学与技术学院 江苏 苏州 215006;苏州大学计算机科学与技术学院 江苏 苏州 215006;苏州大学计算机科学与技术学院 江苏 苏州 215006
基金项目:江苏高校优势学科建设工程项目;国家自然科学基金项目
摘    要:
菜肴图像识别属于图像细粒度识别.针对菜肴子类之间差距小、外观差异大且受外界因素影响难以识别问题,提出一种基于迁移学习和批归一化结合的深度学习模型菜肴图像识别方法.以预训练的V GG-16为迁移学习基础,对部分卷积层以及全连接层输出做批归一化处理,最终得到尺度变换和平移后的特征集合.通过迁移学习解决深度学习所带来的过拟合...

关 键 词:菜肴识别  卷积神经网络  VGG-16  迁移学习  批归一化

FOOD IMAGE RECOGNITION BASED ON TRANSFER LEARNING AND BATCH NORMALIZATION
Guo Xinyue,Hu Qinhan,Liu Chunping,Yang Jiwen. FOOD IMAGE RECOGNITION BASED ON TRANSFER LEARNING AND BATCH NORMALIZATION[J]. Computer Applications and Software, 2021, 38(3): 124-133. DOI: 10.3969/j.issn.1000-386x.2021.03.019
Authors:Guo Xinyue  Hu Qinhan  Liu Chunping  Yang Jiwen
Affiliation:(School of Computer Science and Technology,Soochow University,Suzhou 215006,Jiangsu,China)
Abstract:
Food image recognition is a kind of fine-grained image recognition.Considering small gaps among subclasses of various food,large differences in appearance and other uncertain external factors make it difficult to recognize food images,a deep learning model based on transfer learning and batch normalization is put forward to deal with these problems.Based on the pre-trained VGG-16 model,outputs of partial convolution layers and all fully connected layers were normalized,and we obtained the features after scale transform and scale translation.Transfer learning was applied to the model to overcome over-fitting caused by deep learning in some way as well as obtaining more discriminative in-depth features than artificial features.Batch normalization could help solve the problem of gradient disappearance in deep learning.The indicators in the related experiments of transfer learning were loss,top1 precision and top5 precision,while top1 precision and top5 precision were used as indicators in experiments related with batch normalization.The results of the experiments show that the loss decreases significantly,and the precision is greatly improved on VireoFood 172 and UEC-Food 100 datasets compared with the primitive model.Compared with the existing methods,the accuracy of top 1 and top 5 of food image recognition is improved.
Keywords:Food image recognition  Convolutional neural network(CNN)  VGG-16  Transfer learning  Batch normalization
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号