首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于改进支持向量机的异常检测算法
引用本文:詹琉. 一种基于改进支持向量机的异常检测算法[J]. 计算机与数字工程, 2021, 49(1): 158-162. DOI: 10.3969/j.issn.1672-9722.2021.01.032
作者姓名:詹琉
作者单位:广东工业大学 广州 511400
摘    要:
为了进一步提高入侵检测的准确率,提出了一种融合半监督LDA和PSO-SVM方法,使用累计贡献率ω确定主成分分析法(PCA)占半监督LDA算法比例,然后使用PSO参数寻优算法对支持向量机进行参数寻优,最终得到入侵检测模型.实验结果显示,与单一的PCA或LDA与PSO-SVM组合相比,这种半监督LDA和PSO-SVM方法具...

关 键 词:PCA  LDA  入侵检测  SVM  工业控制系统

An Anomaly Detection Method Based on Improved Support Vector Machine
ZHAN Liu. An Anomaly Detection Method Based on Improved Support Vector Machine[J]. Computer and Digital Engineering, 2021, 49(1): 158-162. DOI: 10.3969/j.issn.1672-9722.2021.01.032
Authors:ZHAN Liu
Affiliation:(Guangdong University of Technology,Guangzhou 511400)
Abstract:
In order to further improve the accuracy of intrusion detection,a semi-supervised LDA and PSO-SVM method is proposed.The cumulative contribution rate is used to determine the proportion of principal component analysis(PCA)to semi-su?pervised LDA algorithm.The PSO parameter optimization algorithm is used to optimize the parameters of support vector machines,and finally the intrusion detection model is obtained.The experimental results show that this semi-supervised LDA and PSO-SVM method has advantages over the single PCA or LDA and PSO-SVM combination,and the accuracy of abnormal behavior is higher than that of PCA or LDA and PSO-SVM combination.
Keywords:PCA  LDA  intrusion detection  SVM  industrial control system
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号