首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进YOLOv3的车辆尾灯检测方法
引用本文:李龙,张重阳. 基于改进YOLOv3的车辆尾灯检测方法[J]. 计算机与现代化, 2021, 0(7): 89-94. DOI: 10.3969/j.issn.1006-2475.2021.07.016
作者姓名:李龙  张重阳
作者单位:南京理工大学计算机科学与工程学院,江苏 南京 210094
基金项目:国家重点研发计划资助项目(2017YFB1300205)
摘    要:在自动驾驶场景中,对前车尾灯的检测是一个广泛且具有研究意义的问题.Darknet53是YOLOv3的特征提取网络,其使用5个残差单元对原始图像进行特征提取并采用三尺度的特征图进行融合预测,尺寸越小对大目标的特征表达能力越强.因为尾灯检测属于小目标检测,所以本文舍去Darknet53的最后一个残差单元,同时增加小尺度特征...

关 键 词:尾灯检测  YOLOv3  特征提取  K-means++
收稿时间:2021-08-02

Vehicle Taillight Detection Method Based on Improved YOLOv3
LI Long,ZHANG Chong-yang. Vehicle Taillight Detection Method Based on Improved YOLOv3[J]. Computer and Modernization, 2021, 0(7): 89-94. DOI: 10.3969/j.issn.1006-2475.2021.07.016
Authors:LI Long  ZHANG Chong-yang
Abstract:In the automatic driving scene, the detection of the front taillights is an extensive and significant problem. Darknet53 is the feature extraction network of YOLOv3. It uses five residual units to extract features from the original image, and uses three scale feature map for fusion prediction. The smaller the size is, the stronger the feature expression ability of large target is. Because taillight detection belongs to small target detection, this paper omits the last residual unit of Darknet53, and increases the repetition times of small-scale feature extraction residual unit. Aiming at the problems of K-means clustering algorithm which is difficult to determine K value and sensitive to the initial clustering center, this paper uses K-means+〖KG-*3〗+ clustering algorithm to obtain anchor value and combines IOU distance measurement index. The experimental results show that the accuracy and speed of taillight detection on the improved YOLOv3 network are higher than those before. The mAP is increased from 79.63% to 89.32%, and the detection time of single image is shorten from 0.014 s to 0.01 s. Compared with other mainstream target detection frameworks, the improved YOLOv3 model has superior detection performance.
Keywords:taillight detection  YOLOv3  feature extraction  K-means++  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机与现代化》浏览原始摘要信息
点击此处可从《计算机与现代化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号