首页 | 本学科首页   官方微博 | 高级检索  
     

基于单神经元的参数自学习模糊控制器的研究
引用本文:张剑,许镇琳,王天将. 基于单神经元的参数自学习模糊控制器的研究[J]. 电机与控制应用, 2005, 32(2): 18-21
作者姓名:张剑  许镇琳  王天将
作者单位:天津大学,天津,300072
摘    要:
为进一步改善永磁交流伺服系统的动静态性能,本文设计了一种基于单神经元的参数自学习模糊控制器,它在控制规则数与二维控制器相当的基础上,可实现三维模糊控制的效果.引入的单神经元采用改进的BP算法来实现比例因子的在线自学习.控制器具有结构及算法简单、易于解析实现的特点.为验证其有效性,本文通过仿真试验,将其与采用常规的PI调节器的控制系统进行比较,结果表明,这种模糊控制器具有较好的控制效果.

关 键 词:参数自学习模糊控制器 单神经元 误差反向传播(BP)算法 永磁同步电动机
修稿时间:2004-02-12

Research of Parameter Self-learning Fuzzy Controller Based on Single Neuron
Zhang Jian,Xu Zhenlin,Wang Tianjiang. Research of Parameter Self-learning Fuzzy Controller Based on Single Neuron[J]. Electric Machines & Control Application, 2005, 32(2): 18-21
Authors:Zhang Jian  Xu Zhenlin  Wang Tianjiang
Affiliation:Tianjin University
Abstract:
A parameter self-learning fuzzy controller based on single neuron is proposed. A three-dimensional fuzzy controller is implemented by simply using a two-dimensional fuzzy control rule-base without any increase of rules. The control parameters are self-tuned by introducing a single neuron together with a back-propagation learning algorithm. This method has simpler structure and control algorithms and can be realized online easily. Simulation results show that the performance is better than that of PI controller, and the system is much more robust.
Keywords:Parameter self-learning fuzzy controller Single neuron Back-propagation learning algorithm Permanent magnet synchronous motor
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号