首页 | 本学科首页   官方微博 | 高级检索  
     


Accuracy-based learning classifier systems: models, analysis and applications to classification tasks
Authors:Bernadó-Mansilla Ester  Garrell-Guiu Josep M
Affiliation:Computing Sciences, Bell Laboratories, Lucent Technologies, 600-700 Mountain Avenue, Murray Hill, NJ 07974-0636, USA. esterb@salleurl.edu
Abstract:Recently, Learning Classifier Systems (LCS) and particularly XCS have arisen as promising methods for classification tasks and data mining. This paper investigates two models of accuracy-based learning classifier systems on different types of classification problems. Departing from XCS, we analyze the evolution of a complete action map as a knowledge representation. We propose an alternative, UCS, which evolves a best action map more efficiently. We also investigate how the fitness pressure guides the search towards accurate classifiers. While XCS bases fitness on a reinforcement learning scheme, UCS defines fitness from a supervised learning scheme. We find significant differences in how the fitness pressure leads towards accuracy, and suggest the use of a supervised approach specially for multi-class problems and problems with unbalanced classes. We also investigate the complexity factors which arise in each type of accuracy-based LCS. We provide a model on the learning complexity of LCS which is based on the representative examples given to the system. The results and observations are also extended to a set of real world classification problems, where accuracy-based LCS are shown to perform competitively with respect to other learning algorithms. The work presents an extended analysis of accuracy-based LCS, gives insight into the understanding of the LCS dynamics, and suggests open issues for further improvement of LCS on classification tasks.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号