Affiliation: | aState Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China bDepartment of Energy and Material Sciences, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan |
Abstract: | A series of CeO2 promoted cobalt spinel catalysts were prepared by the co-precipitation method and tested for the decomposition of nitrous oxide (N2O). Addition of CeO2 to Co3O4 led to an improvement in the catalytic activity for N2O decomposition. The catalyst was most active when the molar ratio of Ce/Co was around 0.05. Complete N2O conversion could be attained over the CoCe0.05 catalyst below 400 °C even in the presence of O2, H2O or NO. Methods of XRD, FE-SEM, BET, XPS, H2-TPR and O2-TPD were used to characterize these catalysts. The analytical results indicated that the addition of CeO2 could increase the surface area of Co3O4, and then improve the reduction of Co3+ to Co2+ by facilitating the desorption of adsorbed oxygen species, which is the rate-determining step of the N2O decomposition over cobalt spinel catalyst. We conclude that these effects, caused by the addition of CeO2, are responsible for the enhancement of catalytic activity of Co3O4. |