首页 | 本学科首页   官方微博 | 高级检索  
     

用多参量法计算薄层和薄互层厚度
引用本文:邵治龙,尹成,黄德济,董林平,张宗命. 用多参量法计算薄层和薄互层厚度[J]. 石油物探, 1997, 36(4): 92-98
作者姓名:邵治龙  尹成  黄德济  董林平  张宗命
作者单位:[1]成都理工学院 [2]西安石油学院
摘    要:
薄层、薄互层厚度预测是储层横向预测的一重要环节。常规计算薄层厚度的方法是在时间域或频率域实现,主要使用单参数计算。本文利用对薄层厚度敏感的地震特征参数之间的非线性关系,使用神经网络算法,建立了一套计算薄层及薄互层厚度方法。通过模型的正反演结果表明:该算法对薄层厚度及薄互层累积厚度的预测均有较好的效果,具有一定的抗噪声能力。对塔中DL92-04测线部分剖面的石炭系I油组薄互层砂岩的累积厚度进行了预测

关 键 词:薄互层 厚度 薄层 储集层 多参量法
收稿时间:1996-10-03
修稿时间:1996-11-28

The calculation of thin bed and thin interbed thicknesses using the multiparameter method
Shao Zhilong. The calculation of thin bed and thin interbed thicknesses using the multiparameter method[J]. Geophysical Prospecting For Petroleum, 1997, 36(4): 92-98
Authors:Shao Zhilong
Affiliation:Chengdu College of Science and Engineering. Chengdu 610059
Abstract:
The prediction of thin bed and thin interbed thicknesses is an important link for the reservior lateral prediction. The conventional method to calculate the thicknesses is implemented in time or frequency domains, mainly using single parameter. In the papr, based on the nonlinear relation between seismic char acteristic parameters sensitive to the thin bed and thin interbed thicknesses, we construct a set of mehtods for calculating the thicknesses by means of a neural network algorithm. Throught the forward modeling and inversion, it is shown that the method is excellent to predict the thicknesses, and have a certain antinoise ability. The method has been used to predict the cumulative thickness of thin interbeded sandstone of a oil-bearing formation of the DL82-04 line. Tge result is satisfactory.
Keywords:Characteristic Paramenter   Gradational Thin Interbed   Cumulative Thickness   Neural Network
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《石油物探》浏览原始摘要信息
点击此处可从《石油物探》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号