首页 | 本学科首页   官方微博 | 高级检索  
     


Probabilistic visual learning for object representation
Authors:Moghaddam   B. Pentland   A.
Affiliation:Media Lab., MIT, Cambridge, MA;
Abstract:We present an unsupervised technique for visual learning, which is based on density estimation in high-dimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a mixture-of-Gaussians model (for multimodal distributions). Those probability densities are then used to formulate a maximum-likelihood estimation framework for visual search and target detection for automatic object recognition and coding. Our learning technique is applied to the probabilistic visual modeling, detection, recognition, and coding of human faces and nonrigid objects, such as hands
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号