首页 | 本学科首页   官方微博 | 高级检索  
     


A spatially adaptive statistical method for the binarization of historical manuscripts and degraded document images
Authors:Rachid Hedjam [Author Vitae]  Reza Farrahi Moghaddam [Author Vitae] [Author Vitae]
Affiliation:Synchromedia Laboratory for Multimedia Communication in Telepresence, École de technologie supérieure, Montréal, QC, Canada H3C 1K3
Abstract:In this paper, we present an adaptive method for the binarization of historical manuscripts and degraded document images. The proposed approach is based on maximum likelihood (ML) classification and uses a priori information and the spatial relationship on the image domain. In contrast with many conventional methods that use a decision based on thresholding, the proposed method performs a soft decision based on a probabilistic model. The main idea is that, from an initialization map (under-binarization) containing only the darkest part of the text, the method is able to recover the main text in the document image, including low-intensity and weak strokes. To do so, fast and robust local estimation of text and background features is obtained using grid-based modeling and inpainting techniques; then, the ML classification is performed to classify pixels into black and white classes. The advantage of the proposed method is that it preserves weak connections and provides smooth and continuous strokes, thanks to its correlation-based nature. Performance is evaluated both subjectively and objectively against standard databases. The proposed method outperforms the state-of-the-art methods presented in the DIBCO’09 binarization contest, although those other methods provide performance close to it.
Keywords:Historical and degraded documents   Document images binarization   Adaptive local document image classification
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号