首页 | 本学科首页   官方微博 | 高级检索  
     


A novel ensemble construction method for multi-view data using random cross-view correlation between within-class examples
Authors:Jianchun Zhang [Author Vitae] [Author Vitae]
Affiliation:Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:Correlated information between multiple views can provide useful information for building robust classifiers. One way to extract correlated features from different views is using canonical correlation analysis (CCA). However, CCA is an unsupervised method and can not preserve discriminant information in feature extraction. In this paper, we first incorporate discriminant information into CCA by using random cross-view correlations between within-class examples. Because of the random property, we can construct a lot of feature extractors based on CCA and random correlation. So furthermore, we fuse those feature extractors and propose a novel method called random correlation ensemble (RCE) for multi-view ensemble learning. We compare RCE with existing multi-view feature extraction methods including CCA and discriminant CCA (DCCA) which use all cross-view correlations between within-class examples, as well as the trivial ensembles of CCA and DCCA which adopt standard bagging and boosting strategies for ensemble learning. Experimental results on several multi-view data sets validate the effectiveness of the proposed method.
Keywords:Random correlation   Canonical correlation analysis   Feature extraction   Ensemble construction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号