首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanics of high speed cutting with curvilinear edge tools
Authors:Yig   it Karpat,Tug   rul   zel
Affiliation:aDepartment of Industrial and Systems Engineering, Rutgers University, Piscataway, NJ 08854, USA
Abstract:High speed cutting is advantageous due to the reduced forces and power, increased energy savings, and overall improved productivity for discrete-part metal manufacturing. However, tool edge geometry and combined cutting conditions highly affects the performance of high speed cutting. In this study, mechanics of cutting with curvilinear (round and oval-like) edge preparation tools in the presence of dead metal zone has been presented to investigate the effects of edge geometry and cutting conditions on the friction and resultant tool temperatures. An analytical slip-line field model is utilized to study the cutting mechanics and friction at the tool-chip and tool–workpiece interfaces in the presence of the dead metal zone in machining with negative rake curvilinear PCBN tools. Inserts with six different edge designs, including a chamfered edge, are tested with a set of orthogonal cutting experiments on AISI 4340 steel. Friction conditions in each different edge design are identified by utilizing the forces and chip geometries measured. Finite-element simulations are conducted using the friction conditions identified and process predictions are compared with experiments. Analyses of temperature, strain, and stress fields are utilized in understanding the mechanics of machining with curvilinear tools.
Keywords:Round edge tools   Friction factor   Dead metal zone   Cutting   Slip line field analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号