首页 | 本学科首页   官方微博 | 高级检索  
     


Improved activated carbon by thermal treatment in methane and steam: Physicochemical influences on MIB sorption capacity
Authors:J.R. Rangel-Mendez
Affiliation:Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA 16802, USA
Abstract:Thermal treatment by steam or by methane plus steam altered the physicochemical properties of a commercial lignite-based activated carbon; and improved the carbon’s sorption capacity for the odorant 2-methylisoborneol (MIB). Rapid small scale column tests (RSSCTs) revealed that favorable thermal treatment allowed an activated carbon to remove this odorant for up to six times longer before initial MIB breakthrough than did its commercial lignite counterpart. For these RSSCTs (135 ppt), clarified water from a water treatment plant (2.07 mg/L TOC) was spiked with 14C-MIB; and liquid scintillation protocols facilitated 14C-MIB detection at 1-3 ppt. The more favorable thermal treatment at 1000 °C increased pore volumes with 5-400 Å widths by twofold; and the bed volume to initial MIB breakthrough correlated fairly well (R2 = 0.9) with pore volume in the range of 5-60 or 5-400 Å. Thermal tailoring altered the carbon’s apparent point of zero charge: from pH 6.5 for the commercial lignite carbon, to pH 9.2 for tailored carbon. When methane and steam were used together, the C, H, N and O contents were virtually the same as for the commercial lignite. In contrast, when steam was employed alone, the percent of oxygen increased, and the percent of H, C and N therefore decreased slightly.
Keywords:A. Activated carbon   B. Chemical vapor deposition, Surface treatment   C. Adsorption   D. Porosity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号