首页 | 本学科首页   官方微博 | 高级检索  
     


Design and optimization of electrostatic fluid accelerators
Authors:Jewell-Larsen   N.E. Tran   E. Krichtafovitch   I.A. Mamishev   A.V.
Affiliation:Dept. of Electr. Eng., Washington Univ., Seattle, WA, USA;
Abstract:Electrostatic air propulsion is a promising technology with such potential applications as energy-efficient ventilation, air sterilization, cooling of electronics, and dehumidification. The challenges of existing designs include the need to increase air speed, backpressure, energy efficiency, and heat exchange capability. The ultimate goal of this direction of research is to create multi-channel energy efficient ionic pumps. In the described project, a single cell analysis is conducted in this study as a building block of future designs. This paper presents the numerical simulation and experimental results of electrostatic fluid accelerators. This study was conducted for the purpose of optimizing device characteristics through the control of the electric field distribution. Simulations were performed for multiple collector electrode voltage distributions. A method to quantify the change in pump performance between different voltage distributions is presented. The influence of space charge on pump performance is also discussed. A significant improvement of air velocity generated by optimized electrostatic fluid accelerators has been achieved using the proposed approach.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号