首页 | 本学科首页   官方微博 | 高级检索  
     


Biostorage Polymers Phenomena in Cheese Wastewater Treatment by a Sequencing Batch Reactor
Authors:V. Goffredo  M. W. Falk  E. D. Schroeder  R. L. Irvine  E. Ranieri
Affiliation:1Dept. of Environmental Engineering and Sustainable Development, Technical Univ. of Bari, 74100 Taranto, Italy.
2Dept. of Civil and Environmental Engineering of Univ. of California, Davis, CA 95616.
3Dept. of Civil Engineering, Univ. of Notre Dame, Notre Dame, IN 46556.
4Dept. of Environmental Engineering and Sustainable Development, Technical Univ. of Bari, Engineering Faculty of Taranto, Viale del Turismo, 8 (Q.re Paolo VI)-74100 Taranto, Italy (corresponding author). E-mail: e.ranieri@poliba.it
Abstract:
Typically, microbes associated with biological wastewater treatment processes are subjected to dynamic organic and nutrient loading conditions. This constantly changing environment imposes a stress, referred to as “feast-famine” that selects for microbes capable of biologically storing substrates as polymers during high organic concentration periods (i.e., feast) for use during periods of low organic availability (i.e., famine). In this study, we monitored the production of biostorage polymers generated with actual cheese wastewater treatment by way of sequencing batch reactors (SBRs). SBRs were employed and operated in duplicate under two long (i.e., hours) filling scenarios (1) “react fill” with mixing/aeration and (2) “static fill” with no mixing/aeration. Despite comparable effluent water quality levels, the results reveal that a “static fill” approach outperforms a “react fill” with respect to maximum biostorage polymer production (50% more poly-β-hydroxybutyrate, 15% more glycogen). The presence of biostorage polymer production has been shown to be indicative of a more stable and robust process.
Keywords:Wastewater management  Reactors  Organic matter  Nutrients  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号