首页 | 本学科首页   官方微博 | 高级检索  
     

基于动态递归神经网络模型的混沌时间序列预测
引用本文:马千里,郑启伦,彭宏,钟谭卫. 基于动态递归神经网络模型的混沌时间序列预测[J]. 计算机应用, 2007, 27(1): 40-43
作者姓名:马千里  郑启伦  彭宏  钟谭卫
作者单位:华南理工大学,计算机科学与工程学院,广东,广州,510640;华南农业大学,理学院,广东,广州,510640
基金项目:国家自然科学基金 , 广东省科技攻关计划 , 广东省广州市科技攻关项目
摘    要:
提出了一种动态递归神经网络模型进行混沌时间序列预测,以最佳延迟时间为间隔的最小嵌入维数作为递归神经网络的输入维数,并按预测相点步进动态递归的生成训练数据,利用混沌特性处理样本及优化网络结构,用递归神经网络映射混沌相空间相点演化的非线性关系,提高了预测精度和稳定性。将该模型应用于Lorenz系统数据仿真以及沪市股票综合指数预测,其结果与已有网络模型预测的结果相比较,精度有很大提高。因此,证明了该预测模型在实际混沌时间序列预测领域的有效性和实用性。

关 键 词:混沌时间序列  递归神经网络  预测
文章编号:1001-9081(2007)01-0040-04
收稿时间:2006-07-10
修稿时间:2006-07-10

Chaotic time series forecasting based on dynamic recurrent neural networks model
MA Qian-li,ZHENG Qi-lun,PENG Hong,ZHONG Tan-wei. Chaotic time series forecasting based on dynamic recurrent neural networks model[J]. Journal of Computer Applications, 2007, 27(1): 40-43
Authors:MA Qian-li  ZHENG Qi-lun  PENG Hong  ZHONG Tan-wei
Abstract:
A Dynamic Recurrent Neural Networks(DRNN) model was presented in this paper to forecast chaotic time series.The input dimension of DRNN was decided by minimal embedding dimension.The training samples were generated by means of the stepping recursive phase points.It can improve precision and stability of prediction to use chaotic characteristic to deal with samples and mapping nonlinear function by DRNN.The DRNN model was applied to simulation of Lorenz system and shot-term forecasting of Shanghai stock index.Compared with the traditional standard BP neural network,this proposed model shows higher precision.Therefore,this research proves the effectiveness of the proposed model in the practical prediction of time series.
Keywords:chaotic time series  recurrent neural network  forecasting
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号