摘 要: | 针对中压电力线点云分类中存在的噪声干扰、分类精度低和鲁棒性不足的问题,提出一种基于改进PointNet++的中压电力线点云分类方法。首先,通过多种手段提取点云空间信息、几何特征以及局部几何特征等多维度特征,为点云单点构造40维特征向量;然后对PointNet++进行改进,引入了点注意力模块(point attention module, PAM)和组注意力模块(group attention module, GAM),同时与层归一化(layer norm)和残差连接结构组合使用,用以增强其特征的细节捕捉能力,降低复杂环境对分类效果影响;最后采用某地机载采集的10 kV中压电力线走廊数据构建数据集,进行了方法验证。实验结果表明,所提方法在Precision、Recall和F1-score上均优于传统机器学习方法和基于PointNet、PointNet++的深度学习方法。相较于PointNet++(XYZ+Features),所提方法在Precision、Recall和F1-score上分别高出1.6个百分点、5.3个百分点和4.6个百分点,且通过可视化结果进一步验证了PAM和GAM的有效性。验证了所提方法在中压电力线点云的提取上更为精确,其结构特征更加清晰,且与周围环境的区分度更高。
|