首页 | 本学科首页   官方微博 | 高级检索  
     


A general class of preconditioners for statistical iterativereconstruction of emission computed tomography
Authors:Chinn   G. Sung-Cheng Huang
Affiliation:Dept. of Molecular & Med. Pharm., California Univ., Los Angeles, CA;
Abstract:A major drawback of statistical iterative image reconstruction for emission computed tomography is its high computational cost. The ill-posed nature of tomography leads to slow convergence for standard gradient-based iterative approaches such as the steepest descent or the conjugate gradient algorithm. Here, new theory and methods for a class of preconditioners are developed for accelerating the convergence rate of iterative reconstruction. To demonstrate the potential of this class of preconditioners, a preconditioned conjugate gradient (PCG) iterative algorithm for weighted least squares reconstruction (WLS) was formulated for emission tomography. Using simulated positron emission tomography (PET) data of the Hoffman brain phantom, it was shown that the convergence rate of the PCG can reduce the number of iterations of the standard conjugate gradient algorithm by a factor of 2-8 times depending on the convergence criterion
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号