首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of a microcomputer-based control system for a domestic sized engine-driven water-to-water heat pump
Authors:P. Welsby  P. J. Diggory  S. Devotta
Abstract:
Steady-state performance data have been obtained on a domestic sized engine-driven water-to-water heat pump. The optimum working fluid suction superheat for the system was found to be 12°C. Over a range of heat sink conditions, increasing the engine speed linearly increased the total heat prouduced by the unit. Similarly, over a range of heat source conditions, increasing the engine speed linearly increased the working fluid evaporation rate. To produce water at 80°C, the heat pump was designed to operate with a heat sink temperature of 70°C, but its efficiency was improved by operating with the heat sink at 55°C. With a heat sink temperature of 55°C the primary energy ratio of the unit was observed to vary from 0–85 to 1–16, over a range of heat source temperatures. Algorithms developed from the steady-state experiments were incorporated as control function subroutines in a microcomputer program. Using this program, the microcomputer was employed to control the heat pump outlet water temperature and the working fluid suction superheat. The control system was tested in a series of dynamic experiments and was found to operate effectively and achieved its control requirements. In certain tests, the transient time period was extended because the electrically-controlled expansion valve was too large for the system and created instability in the suction superheat.
Keywords:Gas engine  Heat pump  Microcomputer control
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号