首页 | 本学科首页   官方微博 | 高级检索  
     


LAMINAR IMPINGING JET HEAT TRANSFER WITH A PURELY VISCOUS INELASTIC FLUID
Authors:Ajay Chatterjee  S C Dhingra  Sumeet S Kapur
Abstract:Laminar impinging flow heat transfer is considered with a purely viscous inelastic fluid. The rheology of the fluid is modeled using a strain rate dependent viscosity coupled with asymptotic Newtonian behavior in the zero shear limit. The velocity and temperature fields are computed numerically for a confined laminar axisymmetric impinging flow. Important features of the non-Newtonian developing flow field are described and contrasted with the Newtonian situation. It is demonstrated that very small departures from Newtonian rheology lead to qualitative changes in the Nusselt number distribution along the impinging surface. In particular, a mildly shear thinning fluid displays a pronounced off-stagnation point heat transfer maxima, a feature that is not observed with a Newtonian fluid. Hence, Newtonian fluid approximations cannot adequately describe experimental heat transfer measurements in such situations even though they may be deemed acceptable in terms of describing the velocity field in the incoming nozzle. Numerical results are presented to analyze the effect of the dimensionless nozzle-to-plate distance, the rheological parameters, and the Reynolds and Prandtl numbers on the magnitude of the off-stagnation point peak heat transfer rate. The influence of the rheology of the fluid is particularly significant at low nozzle-to-plate distances since the mean strain rate in the flow field increases as the nozzle-to-plate distance is reduced. The numerical heat transfer results are interpreted in the context of the developing flow field.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号