首页 | 本学科首页   官方微博 | 高级检索  
     

基于复合多尺度模糊熵的滚动轴承故障诊断方法
引用本文:郑近德 潘海洋 程军圣 张俊. 基于复合多尺度模糊熵的滚动轴承故障诊断方法[J]. 振动与冲击, 2016, 35(8): 116-123
作者姓名:郑近德 潘海洋 程军圣 张俊
作者单位:1.安徽工业大学机械工程学院,安徽马鞍山,243032
2.湖南大学汽车车身先进设计制造国家重点实验室,湖南长沙,410082
摘    要:为了精确地提取滚动轴承振动信号非线性故障特征,针对多尺度熵(Multi-scale entropy,MSE)中粗粒化方式的不足,提出一种新的衡量时间序列自相似性和复杂性的方法--复合多尺度模糊熵(Composite multi-scale Fuzzy entropy,CMFE)。与MSE相比,CMFE综合同一尺度下多个粗粒化序列的信息,随着尺度因子的增加,熵值变化更加稳定,一致性更好。在此基础上,结合Fisher得分特征选择和支持向量机模式分类,提出了一种新的滚动轴承智能故障诊断方法。将提出的方法应用于滚动轴承实验数据分析,通过对比结果验证了所提出方法的有效性和优越性。

关 键 词:多尺度熵  复合多尺度模糊熵  特征选择  滚动轴承  故障诊断  

Composite Multi-scale Fuzzy Entropy based Rolling Bearing Fault diagnosis method
Jinde Zheng Haiyang Pan Junsheng Cheng Jun Zhang. Composite Multi-scale Fuzzy Entropy based Rolling Bearing Fault diagnosis method[J]. Journal of Vibration and Shock, 2016, 35(8): 116-123
Authors:Jinde Zheng Haiyang Pan Junsheng Cheng Jun Zhang
Affiliation:1 School of Mechanical Engineering, Anhui University of Technology, Maanshan, Anhui, 2430322 State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan, 410082
Abstract:To precisely extract the linear fault features from rolling bearing vibration signal, a novel method for measuring the self-similarity and complexity of time series termed composite multi-scale fuzzy entropy (CMFE) is proposed, aiming at the coarse-grained way of multi-scale entropy (MSE). Compared with MSE, CMFE combines the information of multiple coarse-grained sequences and obtains more stable values with a better consistency. Based on the CMFE, Fisher score for feature selection and support vector machines, a newly intelligent rolling bearing fault diagnosis method is proposed. The proposed method is applied to analyze the rolling bearing experimental data by comparisons and the results have verified its effectiveness and superiority.
Keywords:multi-scale entropy  Composite multi-scale fuzzy entropy  feature selection  rolling bearing  ')"   href="  #"  >fault diagnosis
本文献已被 CNKI 等数据库收录!
点击此处可从《振动与冲击》浏览原始摘要信息
点击此处可从《振动与冲击》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号