首页 | 本学科首页   官方微博 | 高级检索  
     


Carrier transport mechanism on ZnO nanorods/p-Si heterojunction diodes with various atmospheres annealing hydrothermal seed-layer
Authors:J.D. Hwang  Y.H. Chen
Affiliation:
  • Department of Electrophysics, National Chiayi University, Chiayi 600, Taiwan
  • Abstract:
    Annealing in various atmospheres (vacuum, N2, and O2) was employed for a hydrothermal seed-layer. The influence on ZnO nanorods (NRs) and carrier transport of ZnO NRs/p-Si heterojunction diodes (HJDs) was investigated. In this work, a hydrothermal method was employed to prepare a seed-layer on a Si substrate, and then annealing at 450 °C in various atmospheres was carried out to improve the subsequent growth of ZnO NRs according to the same method. Observations indicated that ZnO NRs with an O2-annealed seed-layer have a higher nucleation density and absorb fewer OH groups or O2 ions, and hence they have fewer defect-level centres. This leads to a very large rectification ratio of 1.9 × 105 in the ZnO NRs/p-Si HJDs because oxygen atoms compensate for the oxygen vacancy-related defects. More band-gap states are present at the ZnO/p-Si interface for the vacuum annealing sample, and this enables recombination-tunnelling transport with a rather large ideality factor of 7 at forward voltage less than 0.7 V. In contrast, diffusion-recombination transport was obtained in the N2- and O2-annealed samples with ideality factors as low as 2.4 and 2.2, respectively.
    Keywords:ZnO nanorods   Seed-layer   Heterojunction diodes   Hydrothermal method   Rectification ratio   Ideality factor
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号