Manure-borne estrogens as potential environmental contaminants: a review |
| |
Authors: | Hanselman Travis A Graetz Donald A Wilkie Ann C |
| |
Affiliation: | Soil and Water Science Department, 106 Newell Hall, P.O. Box 110510, University of Florida, Institute of Food and Agricultural Sciences, Gainesville, Florida 32611-0510, USA. taha@mail.ifas.ufl.edu |
| |
Abstract: | Livestock wastes are potential sources of endocrine disrupting compounds to the environment. Steroidal estrogen hormones such as estradiol, estrone, and estriol are a particular concern because there is evidence that low nanogram per liter concentrations of estrogens in water can adversely affect the reproductive biology of fish and other aquatic vertebrate species. We performed a literature review to assess the current state of science regarding estrogen physicochemical properties, livestock excretion, and the fate of manure-borne estrogens in the environment. Unconjugated steroidal estrogens have low solubility in water (0.8-13.3 mg L(-1)) and are moderately hydrophobic (log Kow 2.6-4.0). Cattle excrete mostly 17alpha-estradiol, 17beta-estradiol, estrone, and respective sulfated and glucuronidated counterparts, whereas swine and poultry excrete mostly 17beta-estradiol, estrone, estriol, and respective sulfated and glucuronidated counterparts. The environmental fate of estrogens is not clearly known. Laboratory-based studies have found that the biological activity of these compounds is greatly reduced or eliminated within several hours to days due to degradation and sorption. On the other hand, field studies have demonstrated that estrogens are sufficiently mobile and persistent to impact surface and groundwater quality. Future research should use standardized methods for the analysis of manure, soil, and water. More information is needed about the types and amounts of estrogens that exist in livestock wastes and the fate of manure-borne estrogens applied to agricultural lands. Field and laboratory studies should work toward revealing the mechanisms of estrogen degradation, sorption, and transport so that the risk of estrogen contamination of waterways can be minimized. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|