Methods of resource management in problem-oriented computing environment |
| |
Authors: | L. B. Sokolinsky A. V. Shamakina |
| |
Affiliation: | 1.South Ural State University,Chelyabinsk,Russia |
| |
Abstract: | One of the important classes of computational problems is problem-oriented workflow applications executed in distributed computing environment. A problem-oriented workflow application can be represented by a directed graph whose vertices are tasks and arcs are data flows. For a problem-oriented workflow application, we can get a priori estimates of the task execution time and the amount of data to be transferred between the tasks. A distributed computing environment designed for the execution of such tasks in a certain subject domain is called problem-oriented environment. To efficiently use resources of the distributed computing environment, special scheduling algorithms are applied. Nowadays, a great number of such algorithms have been proposed. Some of them (like the DSC algorithm) take into account specific features of problem-oriented workflow applications. Others (like Min–Min algorithm) take into account many-core structure of nodes of the computational network. However, none of them takes into account both factors. In this paper, a mathematical model of problem-oriented computing environment is constructed, and a new problem-oriented scheduling (POS) algorithm is proposed. The POS algorithm takes into account both specifics of the problem-oriented jobs and multi-core structure of the computing system nodes. Results of computational experiments comparing the POS algorithm with other known scheduling algorithms are presented. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|