首页 | 本学科首页   官方微博 | 高级检索  
     


Radiation-induced polymerization of ethylene in pilot plant. III. Heavy-phase recycling process
Authors:Masaaki Takehisa  Hiromasa Watanabe  Hirondo Kurihara  Kouichi Yamaguchi  Hayato Nakajima  Toshiaki Yagi  Terutaka Watanabe  Takanobu Sugo  Takeshi Suwa  Shinsaku Maruyama  Atsuro Kodama  Takeo Shimada  Yoshio Maruyama  Masamichi Tohei  Takeshi Wada  Sueo Machi
Abstract:Radiation-induced polymerization of ethylene using aqueous tert-butyl alcohol as medium was carried out in a large-scale pilot plant with a 50-liter central source-type reactor at a pressure of 105 to 395 kg/cm2, temperature of 30° to 80°C, mean dose rate of 4.5 × 104 to 1.9 × 105 rads/hr, ethylene feed rate of 5.5 to 23.5 kg/hr, and medium feed rate of 21 to 102 l./hr. The space–time yield and molecular weight of the polymer were in the range of 4.7 to 16.8 g/l.-hr and 1.3 × 104 to 8.9 × 104, respectively. The space–time yield and molecular weight increased with mean residence time at 30°C, whereas at 80°C they became almost independent of the time. The space–time yield increased with pressure and dose rate, slightly decreased with temperature, and was maximum at ethylene molar fraction of 0.5. The polymer molecular weight increased with pressure and ethylene molar fraction, and decreased with dose rate and temperature. The total amount of deposited polymer on the reactor wall, source case wall, and scraping blades was usually less than 1 kg, which was negligibly small for the analysis of polymerization. Continuous discharge of the polymer slurry and production of fine-powder polyethylene were successfully carried out. In the central source-type reactor, a dose rate of 1.9 × 105 rads/hr was obtained with a 60Co source of ca. 12 kCi.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号