首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊C-均值聚类算法的入侵检测
引用本文:罗军生,李永忠,杜晓. 基于模糊C-均值聚类算法的入侵检测[J]. 计算机技术与发展, 2008, 18(1): 178-180
作者姓名:罗军生  李永忠  杜晓
作者单位:江苏科技大学,电子信息学院,江苏,镇江,212003
摘    要:
聚类分析是一种有效的异常入侵检测方法,可用以在网络数据集中区分正常流量和异常流量.文中采用模糊C-均值聚类算法对网络流量样本集进行划分,从中区分正常流量和异常流量,并针对入侵检测问题的特性提出了新的相似性度量方法.最后,利用KDD99数据集进行实验,证明该算法能够有效地发现异常流量.

关 键 词:模糊聚类  入侵检测  距离测度  混合属性  数据挖掘  基于模糊  均值  聚类算法  异常入侵检测方法  Clustering Algorithm  Fuzzy  Based  Detection  发现  实验  利用  相似性度量方法  特性  检测问题  划分  样本集  网络流量  异常流量  数据集  聚类分析
文章编号:1673-629X(2008)01-0178-03
收稿时间:2007-03-27
修稿时间:2007-03-27

Intrusion Detection Based on Fuzzy C-Means Clustering Algorithm
LUO Jun-sheng,LI Yong-zhong,DU Xiao. Intrusion Detection Based on Fuzzy C-Means Clustering Algorithm[J]. Computer Technology and Development, 2008, 18(1): 178-180
Authors:LUO Jun-sheng  LI Yong-zhong  DU Xiao
Abstract:
Clustering is an effective method of anomaly intrusion detection. It could distinguish normal flow and abnormal flow in the network data set. Uses fuzzy C- means clustering algorithm for dividing the network data set into normal flow and abnormal flow. A new distance measurement method which is designed for intrusion detecting problem specially has Been put forward in this paper. In the end,use KDD 1999 data set to experiment algorithm,and the result proves that this algorithm could discover the abnormal flows effectively.
Keywords:fuzzy clustering   intrusion detection  distance measurement  mixed attribute  data mining
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号