首页 | 本学科首页   官方微博 | 高级检索  
     


Characteristic profiles of lipid classes,fatty acids and triacylglycerol molecular species of peas (Pisum sativum L.)
Authors:Hiromi Yoshida  Yuka Tomiyama  Megumi Tanaka  Yoshiyuki Mizushina
Affiliation:1. Department of Nutritional Science, Kobe Gakuin University, Kobe, Hyogo, Japan;2. Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe, Hyogo, Japan
Abstract:Seed oils from four legume cultivars of Pisum sativum, grown in Japan, were extracted and classified by thin‐layer chromatography (TLC) into seven fractions: hydrocarbons (HC; 0.5–0.9 wt‐%), steryl esters (SE; 0.8–2.4 wt‐%), triacylglycerols (TAG; 31.2–40.3 wt‐%), free fatty acids (FFA; 1.3–2.7 wt‐%), 1,3‐diacylglycerols (1,3‐DAG; 1.0–1.8 wt‐%), 1,2‐diacylglycerols (1,2‐DAG; 1.0–2.2 wt‐%) and phospholipids (PL; 52.2–61.3 wt‐%). All lipid samples had high amounts of total unsaturated fatty acids, representing 75.0–84.3 wt‐% for TAG and PL. Molecular species and fatty acid distributions of TAG, isolated from the total lipids in the peas, were analyzed by a combination of argentation‐TLC and GC. Eighteen different molecular species were detected. With a few exceptions, the main TAG components were SMD (7.5–10.3 wt‐%), M2D (8.0–8.9 wt‐%), SD2 (12.0–18.3 wt‐%), SMT (9.8–11.0 wt‐%), MD2 (12.0–20.3 wt‐%), SDT (9.7–10.8 wt‐%), M2T (2.5–7.3 wt‐%) and D3 (14.5–15.2 wt‐%) (where S denotes a saturated fatty acid, M denotes a monoene, D denotes a diene, and T denotes a triene). It seems that the four cultivars were highly related to each other based on the fatty acid composition of the TAG as well as the distribution profiles in the different TAG molecular species. In general, these results suggest that there are no essential differences (p >0.05) in the oil components among the four cultivars.
Keywords:Acyl chain  AgNO3‐TLC  distributions  fatty acids  molecular species  peas (Pisum sativum   L  )  triacylglycerols
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号