首页 | 本学科首页   官方微博 | 高级检索  
     


Architectural Modifications to Enhance the Floating-Point Performance of FPGAs
Authors:Beauchamp   M.J. Hauck   S. Underwood   K.D. Hemmert   K.S.
Affiliation:MIPS Technol., Mountain View;
Abstract:
With the density of field-programmable gate arrays (FPGAs) steadily increasing, FPGAs have reached the point where they are capable of implementing complex floating-point applications. However, their general-purpose nature has limited the use of FPGAs in scientific applications that require floating-point arithmetic due to the large amount of FPGA resources that floating-point operations still require. This paper considers three architectural modifications that make floating-point operations more efficient on FPGAs. The first modification embeds floating-point multiply-add units in an island-style FPGA. While offering a dramatic reduction in area and improvement in clock rate, these embedded units are a significant change and may not be justified by the market. The next two modifications target a major component of IEEE compliant floating-point computations: variable length shifters. The first alternative to lookup tables (LUTs) for implementing the variable length shifters is a coarse-grained approach: embedded variable length shifters in the FPGA fabric. These shifters offer a significant reduction in area with a modest increase in clock rate and are smaller and more general than embedded floating-point units. The next alternative is a fine-grained approach: adding a 4:1 multiplexer unit inside a configurable logic block (CLB), in parallel to each 4-LUT. While this offers the smallest overall area improvement, it does offer a significant improvement in clock rate with only a trivial increase in the size of the CLB.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号