首页 | 本学科首页   官方微博 | 高级检索  
     


The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs
Authors:A. Alderson  K.L. AldersonG. Chirima  N. RaviralaK.M. Zied
Affiliation:Centre for Materials Research and Innovation, University of Bolton, Deane Road, Bolton BL3 5AB, UK
Abstract:Four novel cylinder-ligament honeycombs are described, where each cylinder has 3 tangentially-attached ligaments to form either a hexagonal or re-entrant hexagonal cellular network. The re-entrant cylinder-ligament honeycombs are reported for the first time. The in-plane linear elastic constants and out-of-plane bending response of these honeycombs are predicted using finite element (FE) modelling and comparison made with hexagonal and re-entrant hexagonal honeycombs without cylinders. A laser-crafted re-entrant cylinder-ligament honeycomb is manufactured and characterized to verify the FE model. The re-entrant honeycombs display negative Poisson’s ratios and synclastic curvature upon out-of-plane bending. The hexagonal and ‘trichiral’ honeycombs possess positive Poisson’s ratios and anticlastic curvature. The ‘anti-trichiral’ honeycomb (short ligament limit) displays negative Poisson’s ratios when loaded in the plane of the honeycomb, but positive Poisson’s ratio behaviour (anticlastic curvature) under out-of-plane bending. These responses are understood qualitatively through considering deformation occurs via direct ligament flexure and cylinder rotation-induced ligament flexure.
Keywords:A. Smart materials   B. Mechanical properties   C. Deformation   C. Elastic properties   C. Finite element analysis (FEA)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号