首页 | 本学科首页   官方微博 | 高级检索  
     

电价预测的自适应支持向量机方法研究
引用本文:刘庆彪,张步涵,王凯,谢光龙. 电价预测的自适应支持向量机方法研究[J]. 电力系统保护与控制, 2008, 36(22): 34-39
作者姓名:刘庆彪  张步涵  王凯  谢光龙
作者单位:华中科技大学电力安全与高效湖北省重点实验室,西宁供电公司
摘    要:在电力市场中对电价进行准确的预测无论对于发电商、电力用户还是市场运营者都具有重要的意义,该文突破了传统电价预测方法基于经验风险最小化的局限性,采用数据挖掘技术实现了数据隐含特征的提取,通过判断数据特征进行了核函数的选择,采用遗传算法实现了计算参数的自适应调整,并用相似样本和邻近样本训练支持向量机,对预测结果进行了去噪声合成。利用澳大利亚NSW电力市场的数据进行了验证,单日预测的平均百分比误差(MAPE)为5.85%,明显优于神经网络和单纯支持向量机的预测结果。扩大样本长度进行研究,一周的预测结果表明该方法不但能够有效学习样本信息、去除电价毛刺,并能有效跟踪电价的突变情况,实现了学习适度的优良泛化性预测。

关 键 词:电价预测  数据挖掘  支持向量机  自适应调整

Research on SA-SVM methods for price forecasting
LIU Qing-biao,,ZHANG Bu-han,WANG Kai,XIE Guang-long. Research on SA-SVM methods for price forecasting[J]. Power System Protection and Control, 2008, 36(22): 34-39
Authors:LIU Qing-biao    ZHANG Bu-han  WANG Kai  XIE Guang-long
Affiliation:LIU Qing-biao1,2,ZHANG Bu-han1,WANG Kai1,XIE Guang-long1
Abstract:Price forecasting is of great importance in power market,this paper used data mining techniques to extract implicit data properties,selected kernel functions according to data properties,made use of Genetic Algorithm(GA) theory to realize Self-Adapting Support Vector Machine(SA-SVM),and then used similar samples and adjacency samples to train SVM and synthesis the final result noise-freely.When examining this method using NSW market data in Australia,we found that one day forecasted mean absolute percentage error(MAPE) was much better than Neural Network method and pure Support Vector Machine method.When extending forecasting sample,we found one week forecasted result indicated that SA-SVM could not only study valuable information and get rid of noise,but also trace power price peaks and get quality forecasting results of good generalization and proper study.
Keywords:price forecasting  data mining  support vector machine  self-adapting
本文献已被 CNKI 等数据库收录!
点击此处可从《电力系统保护与控制》浏览原始摘要信息
点击此处可从《电力系统保护与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号