首页 | 本学科首页   官方微博 | 高级检索  
     

基于无监督聚类的约简支撑向量机
引用本文:郑松峰,徐维朴,刘维湘,郑南宁. 基于无监督聚类的约简支撑向量机[J]. 计算机工程与应用, 2004, 40(14): 74-76
作者姓名:郑松峰  徐维朴  刘维湘  郑南宁
作者单位:西安交通大学人工智能与机器人研究所,西安,710049;西安交通大学人工智能与机器人研究所,西安,710049;西安交通大学人工智能与机器人研究所,西安,710049;西安交通大学人工智能与机器人研究所,西安,710049
摘    要:为解决标准支撑向量机算法所面临的巨大的计算量问题,Lee和Mangasarian提出了约简支撑向量机算法;但他们选取的“支撑向量”是从训练样本里面任意选的,其分类结果受随机性影响比较大。该文利用简单的无监督聚类算法,在样本空间中选取了一些具有较强代表性的样本作为“支撑向量”,再运用约简支撑向量机算法,有效地减少了运算量。实验验证文中方法可以用较少的“支撑向量”来得到较高的识别率,同时运行时间也大大缩短。

关 键 词:约简支撑向量机  聚类  支撑向量  优化
文章编号:1002-8331-(2004)14-0074-03

Unsupervised Clustering Based Reduced Support Vector Machines
Zheng Songfeng Xu Weipu Liu Weixiang Zheng Nanning. Unsupervised Clustering Based Reduced Support Vector Machines[J]. Computer Engineering and Applications, 2004, 40(14): 74-76
Authors:Zheng Songfeng Xu Weipu Liu Weixiang Zheng Nanning
Abstract:To overcome the heavy computation of the standard Support Vector Machines(SVMs ),Lee and Mangasarian have proposed Reduced Support Vector Machines(RSVM),but the method they used to select“support vectors”is to choose them from the training set randomly,and this will affect the test result.In this paper,some representative vectors are selected as support vectors via a simple unsupervised clustering algorithm,and then RSVM method is applied on these vectors.The experimental results demonstrate that compared with the standard RSVM method,the proposed method can get higher recognition accuracy with fewer“support vectors”and the running time is reduced significantly.
Keywords:Reduced Support Vector Machines  clustering  Support Vector  optimization
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号