首页 | 本学科首页   官方微博 | 高级检索  
     


Matrix effect on paralytic shellfish toxins quantification and toxicity estimation in mussels exposed to Gymnodinium catenatum
Abstract:Paralytic shellfish toxins were quantified in whole tissues of the mussel Mytilus galloprovincialis exposed to blooms of the dinoflagellate Gymnodinium catenatum in Portuguese coastal waters. A validated liquid chromatography method with fluorescence detection, involving pre-chromatographic oxidation was used to quantify carbamoyl, N-sulfocarbamoyl and decarbamoyl toxins. In order to test for any matrix effect in the quantification of those toxins, concentrations obtained from solvent and matrix matched calibration curves were compared. A suppression of the fluorescence signal was observed in mussel extract or fraction in comparison to solvent for the compounds dcGTX2?+?3, GTX2?+?3 and GTX1?+?4, while an enhancement was found for C1?+?2, dcSTX, STX, B1, dcNEO and NEO. These results showed that a matrix effect varies among compounds. The difference of concentrations between solvent and matrix matched calibration curves for C1?+?2 (median?=?421?ng?g?1) exceeded largely the values for the other quantified compounds (0.09–58?ng?g?1). Those differences were converted into toxicity differences, using Oshima toxicity equivalence factors. The compounds C1?+?2 and dcNEO were the major contributors to the differences of total toxicity in the mussel samples. The differences of total toxicity were calculated in ten mussel samples collected during a 10-week blooming period in Portuguese coastal lagoon. Values varied between 53 and 218?µg STX equivalents kg?1. The positive differences mean that the estimated toxicity using solvent calibration curves exceed the values taking into account the matrix. For the toxicity interval 200–800?µg STX equivalents kg?1 an increase was found between 44 and 28%.
Keywords:paralytic shellfish poisoning  phycotoxins  saxitoxin  LC-FLD
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号