首页 | 本学科首页   官方微博 | 高级检索  
     

基于退火遗传算法的水电站短期优化调度
引用本文:晋健,马光文,陶春华. 基于退火遗传算法的水电站短期优化调度[J]. 水力发电学报, 2008, 27(6): 18-21
作者姓名:晋健  马光文  陶春华
作者单位:四川大学水电学院,成都,610065;国电大渡河流域水电开发有限公司,成都,610041;四川大学水电学院,成都,610065
基金项目:国家自然科学基金重点项目资助
摘    要:电力市场环境下,水电站短期优化调度对优化发电企业向电力市场申报的次日发电计划和最大化企业发电收益具有重要意义。为了提高短期优化调度的计算精度和效率,针对模拟退火算法和遗传算法的优缺点将两者结合起来形成退火遗传算法,改善其计算精度和速度。实例计算表明该方法是可行的。

关 键 词:水电站  短期优化调度  退火遗传算法

Short-term optimal operation of hydropower station based on annealing genetic algorithm
JIN Jian. Short-term optimal operation of hydropower station based on annealing genetic algorithm[J]. Journal of Hydroelectric Engineering, 2008, 27(6): 18-21
Authors:JIN Jian
Abstract:In power market,the short-term optimal operation(STOO) of hydropower station is an important method for the electricity schedule fo maximize the income of the company.In order to improve the precision and efficiency of STOO,the annealing genetic algorithm(AGA)is presented which is based on simulated annealing algorithm and genetic algorithm,the convergence and solution quality are improved.The precision of AGA is better than standard genetic algorithm,the computed speed is faster than simulated annealing algorithm.The simulated computing result shows that the proposed method is effective.
Keywords:hydropower station  short-term optimal operation  annealing genetic algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号