首页 | 本学科首页   官方微博 | 高级检索  
     


Biohydrogen from molasses with ethanol-type fermentation: Effect of hydraulic retention time
Authors:Bing Wang  Yongfeng Li  Nanqi Ren
Affiliation:1. School of Forestry, Northeast Forestry University, Harbin 150040, China;2. School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150040, China
Abstract:Though ethanol-type fermentation has many advantages for improving hydrogen production rate (HPR) in continuously mode hydrogen producing system, information on this fermentation is very deficient. The effect of hydraulic retention time (HRT) on biohydrogen production and operational stability of ethanol-type fermentation was investigated in a continuous stirred tank reactor (CSTR) using molasses as substrate. Five HRTs were examined, ranging from 4 to 10 h. At HRT 5 h, the highest HPR of 12.27 mmol L−1 h−1 was obtained from ethanol-type fermentation in the pH range of 4.3–4.4. During the whole operation process, ethanol, butyrate and acetate were the predominant metabolites. A total COD concentration of ethanol and acetate accounted for above 73.3% of total soluble microbial products. Linear regression showed that HPR and ethanol production rate were proportionately correlated at all HRTs which could be expressed as y = 0.9821x − 3.5151 (r2 = 0.9498). It is meaningful that the proposed recovery of both hydrogen and ethanol from fermentation process can improve energy production rate and economic profit. Results demonstrated that the best energy production rate was 15.50 kJ L−1 h−1, occurred at HRT = 5 h.
Keywords:Ethanol-type fermentation  Continuous stirred tank reactor  Hydraulic retention time  Hydrogen production rate  Energy production rate
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号