首页 | 本学科首页   官方微博 | 高级检索  
     


Real-time pH microscopy down to the molecular level by combined scanning electrochemical microscopy/single-molecule fluorescence spectroscopy
Authors:Boldt Frank-Mario  Heinze Jürgen  Diez Manuel  Petersen Jan  Börsch Michael
Affiliation:Freiburger Materialforschungszentrum (FMF), Institut für Physikalische Chemie I, Albert-Ludwigs-Universit?t Freiburg, D-79104 Freiburg, Germany.
Abstract:
A new technique combining scanning electrochemical microscopy (SECM) and single-molecule fluorescence spectroscopy was developed to accomplish locally and temporally defined pH adjustments in buffer solutions and on surfaces monitored by fluorescence alteration of pH-sensitive fluorophores in real time. Local pH gradients were created by electrochemical generation of H(+) or OH(-) during redox reactions at ultramicro- or nanoelectrodes with radii from 5 microm to 35 nm. Ratiometric fluorescence measurements were performed with a confocal laser microscope using two detectors for different spectral regions. Time-resolved pH measurements were carried out with freely diffusing SNARF-1-dextran. For pH measurements on surfaces, total internal reflection fluorescence microscopy was used in combination with a CCD camera. The fluorophore SNAFL-succinimidyl ester was bound to amino-terminated octadecylsilane-coated coverslips. Local pH determinations could be accomplished with an accuracy of 0.2 unit. The measured pH profiles showed a strong dependence on the tip diameter, the buffer/mediator concentration ratio, and the tip-surface distance. As an application for bionanotechnology using SECM-induced pH changes on the molecular level, the proton-driven ATP synthesis by single membrane-bound F(0)F(1)-ATP synthases was investigated. ATP synthesis resulted in stepwise subunit rotation within the enzyme that was monitored by single-molecule fluorescence resonance energy transfer.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号