首页 | 本学科首页   官方微博 | 高级检索  
     


Scalable distributed Louvain algorithm for community detection in large graphs
Authors:Sattar  Naw Safrin  Arifuzzaman  Shaikh
Affiliation:1.Department of Computer Science, University of New Orleans, New Orleans, LA, 70148, USA
;
Abstract:

Community detection (or clustering) in large-scale graphs is an important problem in graph mining. Communities reveal interesting organizational and functional characteristics of a network. Louvain algorithm is an efficient sequential algorithm for community detection. However, such sequential algorithms fail to scale for emerging large-scale data. Scalable parallel algorithms are necessary to process large graph datasets. In this work, we show a comparative analysis of our different parallel implementations of Louvain algorithm. We design parallel algorithms for Louvain method in shared memory and distributed memory settings. Developing distributed memory parallel algorithms is challenging because of inter-process communication and load balancing issues. We incorporate dynamic load balancing in our final algorithm DPLAL (Distributed Parallel Louvain Algorithm with Load-balancing). DPLAL overcomes the performance bottleneck of the previous algorithms and shows around 12-fold speedup scaling to a larger number of processors. We also compare the performance of our algorithm with some other prominent algorithms in the literature and get better or comparable performance . We identify the challenges in developing distributed memory algorithm and provide an optimized solution DPLAL showing performance analysis of the algorithm on large-scale real-world networks from different domains.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号