首页 | 本学科首页   官方微博 | 高级检索  
     

面向Dataflow的异构集群混合式资源调度框架研究
作者姓名:汤小春  赵全  符莹  朱紫钰  丁朝  胡小雪  李战怀
作者单位:西北工业大学 计算机学院,陕西 西安 710129
基金项目:国家重点研发计划(2018YFB1003400)
摘    要:Dataflow模型的使用,使得大数据计算的批处理和流处理融合为一体.但是,现有的针对大数据计算的集群资源调度框架,要么面向流处理,要么面向批处理,不适合批处理与流处理作业共享集群资源的需求.另外,GPU用于大数据分析计算时,由于缺乏有效的CPU-GPU资源解耦方式,降低了资源使用效率.在分析现有的集群资源调度框架的基础上,设计并实现了一种可以感知批处理/流处理应用的混合式资源调度框架HRM.它以共享状态架构为基础,采用乐观封锁协议和悲观封锁协议相结合的方式,确保流处理作业和批处理作业的不同资源要求.在计算节点上,提供CPU-GPU资源的灵活绑定,采用队列堆叠技术,不但满足流处理作业的实时性需求,也减少了反馈延迟并实现了GPU资源的共享.通过模拟大规模作业的调度,结果显示, HRM的调度延迟只有集中式调度框架的75%左右;使用实际负载测试,批处理与流处理共享集群时,使用HRM调度框架, CPU资源利用率提高25%以上;而使用细粒度作业调度方法,不但GPU利用率提高2倍以上,作业的完成时间也能够减少50%左右.

关 键 词:数据流模型  批处理  流处理  作业感知  CPU-GPU  队列堆叠
收稿时间:2020-11-23
修稿时间:2021-01-25
本文献已被 万方数据 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号