首页 | 本学科首页   官方微博 | 高级检索  
     


Shock-wave compression of brittle solids
Authors:D. E. Grady
Abstract:
Extensive experimental investigation in the form of large-amplitude, nonlinear wave-profile measurements which manifest the shock strength and equation-of-state properties of brittle solids has been performed. Brittle materials for which a base of dynamic property data is available include Al2O3, AlN, B4C, CaCO3, SiC, Si3N4, SiO2 (quartz and glass), TiB2, WC and ZrO2. Planar impact methods and velocity interferometry diagnostics have been used exclusively to provide the high-resolution shock-profile data. These wave-profile data are providing engineering dynamic strength and equation-of-state properties as well as controlled, shock-induced motion histories for the validation of theoretical and computational models. Of equal importance, such data are providing a window into the physics of a newly emerging understanding of the compression and deformation behavior of high-strength brittle solids. When considered along with a rich assortment of strength and deformation data in the literature, a systematic assessment of this shock-wave data lends strong support for failure waves and concomitant high-confinement dilatancy as a general mechanism of inelastic deformation in the shock compression of ceramics. Phase transformation in selected brittle solids appears to be a critical state phenomenon strongly controlled by kinetics. The risetime and structure of deformation shock waves in brittle solids are controlled by viscous effects which at present are still poorly understood. The shock-wave data also suggest that both crystalline plasticity and brittle fracture may play important and interconnected roles in the dynamic failure process.
Keywords:Shock-waves   Ceramics   Brittle solids   Phase transformation   Viscosity   Plasticity   Fracture
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号