首页 | 本学科首页   官方微博 | 高级检索  
     

基于自组织映射神经网络的市场清算电价预测
引用本文:曾次玲,张步涵,谢培元. 基于自组织映射神经网络的市场清算电价预测[J]. 电力系统保护与控制, 2005, 33(13): 39-43
作者姓名:曾次玲  张步涵  谢培元
作者单位:1. 华中科技大学电气与电子工程学院, 湖北武汉430074;2. 湖南省电力调度通信中心, 湖南长沙410007
摘    要:市场清算电价预测是电力市场中交易决策的基础。人工神经网络是电价预测较为理想的方法,但依然存在一些问题,如样本训练有时需要很长时间,存在收敛问题,特别是当样本特征量不明显的时候,这种现象更为突出。针对这一问题,利用自组织映射的聚类特性将历史数据进行特征分类和筛选处理,处理后形成的新数据用于训练三层BP神经网络,仿真结果表明,经过这种数据处理后,网络的收敛速度得到了显著提高,且预测效果良好。

关 键 词:电力市场   电价预测   BP神经网络   自组织映射神经网络
文章编号:1003-4897(2005)13-0039-05
修稿时间:2004-10-21

Forecasting market clearing price using self-organizing map neural network
ZENG Ci-ling,ZHANG Bu-han,XIE Pei-yuan. Forecasting market clearing price using self-organizing map neural network[J]. Power System Protection and Control, 2005, 33(13): 39-43
Authors:ZENG Ci-ling  ZHANG Bu-han  XIE Pei-yuan
Affiliation:ZENG Ci-ling~1,ZHANG Bu-han~1,XIE Pei-yuan~2
Abstract:Forecasting the market-clearing price (MCP) is the most essential task for any decision-making in electricity market. Artificial neural network (ANN) is a preferable forecasting method. However, there still exist some theoretic shortcomings in ANN method, such as the time-consuming sample training and convergence problem. Especially when the characteristic of sample is hard to capture, those phenomena will be more explicit. To solve the problem, based on the characteristic of self-organizing and clustering of self-organizing map (SOM), this paper proposes a method to deal with the sample dataset of the BP model, which can perform a data analysis, and then form a new training dataset. By using the BP network on the new dataset analyzed by SOM for the prediction, the efficiency is advanced remarkably and the prediction is satisfactory.
Keywords:power market  price forecasting  BP network  self-organizing map
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《电力系统保护与控制》浏览原始摘要信息
点击此处可从《电力系统保护与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号