Arachidonic acid stimulates the intrinsic activity of ubiquitous glucose transporter (GLUT1) in 3T3-L1 adipocytes by a protein kinase C-independent mechanism |
| |
Authors: | JC Fong CC Chen D Liu SP Chai MS Tu KY Chu |
| |
Affiliation: | Institute of Biochemistry, National Yang-Ming University, Taipei, Taiwan, Republic of China. |
| |
Abstract: | ![]() Exposure of adipocytes to arachidonic acid rapidly enhanced basal 2-deoxyglucose uptake, reaching maximal effect at approximately 8 hr. Insulin-stimulated 2-deoxyglucose uptake was not altered over the experimental period. While the short-term (2-h exposure) effect of arachidonic acid was negligibly influenced by cycloheximide, the enhancement of glucose transport by long-term (8-h) exposure to arachidonic acid was markedly decreased by the simultaneous presence of protein-synthesis inhibitors, implying that the short-term and long-term effects of arachidonic acid may involve distinct mechanisms. Immunoblot analysis revealed that 8-h but not 2-h exposure to arachidonic acid increased the content of the ubiquitous glucose transporter (GLUT1) in both total cellular and plasma membranes. The insulin-responsive glucose transporter (GLUT4), on the other hand, was not affected. Following 2-h exposure to arachidonic acid, kinetic studies indicated that the apparent Vmax of basal 2-deoxyglucose uptake was more than doubled, while the apparent Km for 2-deoxyglucose remained unchanged. Protein kinase C (PKC) depletion by pretreating cells with 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) for 24 h had little influence on the subsequent enhancing effect of arachidonic acid on 2-deoxyglucose uptake. In addition, PMA was able to stimulate 2-deoxyglucose uptake in arachidonic-acid-pretreated cells with similar increments as in non-treated cells. Thus, our data seem to suggest that arachidonic acid may enhance the intrinsic activity of GLUT1 by a PKC-independent mechanism. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|