首页 | 本学科首页   官方微博 | 高级检索  
     

用支持向量机网络实现VBR视频通信量的预测
引用本文:李素梅,张延炘,常胜江. 用支持向量机网络实现VBR视频通信量的预测[J]. 电子学报, 2006, 34(2): 210-213
作者姓名:李素梅  张延炘  常胜江
作者单位:南开大学信息技术科学学院,天津,300071;南开大学信息技术科学学院,天津,300071;南开大学信息技术科学学院,天津,300071
基金项目:Tianjin Natural Sci. Found,中国科学院资助项目,高等学校博士学科点专项科研项目,中国科学院资助项目
摘    要:VBR(Variable Bit Rate)视频信号具有时变性、非线性和突发性等特点,实现该信号通信量的高精度预测是提高信息传输速度和提高网络带宽资源利用效率的重要手段.针对以上问题,本文提出了一种用于VBR视频通信量预测的差分输入支持向量机(SVM:Support Vector Machine)网络模型.该网络模型采用结构风险最小化准则,在最小化经验风险的同时,尽量缩小模型预测误差的上界,从而使网络模型具有更好的推广能力.实验结果表明:支持向量机网络模型的预测误差为0.0018,而梯度径向基函数(Gradient Radial Basis Function:GRBF)神经网络模型的预测误差为0.0029.可以看出,支持向量机网络模型的预测精度要比GRBF网络模型的预测精度高出大约40%.

关 键 词:VBR视频通信量  支持向量机  结构风险
文章编号:0372-2112(2006)02-0210-04
收稿时间:2005-05-10
修稿时间:2005-05-102005-09-06

VBR Video Traffic Prediction Based on the SVM Networks
LI Su-mei,ZHANG Yan-xin,CHANG Sheng-jiang. VBR Video Traffic Prediction Based on the SVM Networks[J]. Acta Electronica Sinica, 2006, 34(2): 210-213
Authors:LI Su-mei  ZHANG Yan-xin  CHANG Sheng-jiang
Affiliation:College of Information Technical Science,Nankai University,Tianjin 300071,China
Abstract:A support vector machine neural network is proposed for performing VBR video traffic prediction. It takes differential signal as the input of the network. According to the criteria of structural risk minimization of SVM, the errors between sample - data and model - data are minimized and the upper bound of predicting error of the model is also decreased simultaneously so that the ability of generalization of the model is much improved. The simulation results show that the prediction error of SVM neural networks is 0.0018, while the prediction error of GRBF neural networks is 0.0029. In prediction precision, SVM neural networks model extended 40% than GRBF model.
Keywords:VBR video traffic  support vector machine(SVM)  structure risk
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号