首页 | 本学科首页   官方微博 | 高级检索  
     

ASM和BP网络在苹果果形研究中的方法比较
引用本文:许月明,蔡健荣,杜丰玉. ASM和BP网络在苹果果形研究中的方法比较[J]. 食品科学, 2007, 28(4): 56-59
作者姓名:许月明  蔡健荣  杜丰玉
作者单位:芜湖职业技术学院生物工程系; 江苏大学食品与生物工程学院; 莱阳农学院植物保护学院 安徽 芜湖 241000; 江苏 镇江 212013; 山东 青岛 266061;
基金项目:江苏省高校自然科学基金
摘    要:形状判别是苹果外观品质检测中不可缺少的内容。本文先后采用主动形状模型(ASM)和基于傅立叶描述子的神经网络方法进行苹果形态分级。实验结果表明:传统神经网络方法的判别准确率为83.3%左右,而ASM方法的分级效果较好,对苹果果形的判别准确率高达95%,模型与实际对象匹配的时间不超过2s,且直观性强、鲁棒性好,具有较好的灵活性,能够满足苹果实时分级的需要。

关 键 词:苹果   果形   ASM   主成分分析   BP   傅立叶变换  
文章编号:1002-6630(2007)04-0056-04
修稿时间:2006-04-30

Methods Compared between ASM and BP Network in Apple Shape Research
XU Yue-ming,CAI Jian-rong,DU Feng-yu. Methods Compared between ASM and BP Network in Apple Shape Research[J]. Food Science, 2007, 28(4): 56-59
Authors:XU Yue-ming  CAI Jian-rong  DU Feng-yu
Affiliation:1.Department of Biology Engineering,Wuhu Institute of Technology,Wuhu 241000,China; 2.School of Food and Biological Engineering, Jiangsu University,Zhenjiang 212013,China; 3.Institute of Plant Protection,Laiyang Agricultural College,Qingdao 266061,China
Abstract:Apple shape identification is an essential character on appraising its appearance quality.This paper introduces a method of active shape models(ASM)as the neural network method based on Fourier to identify the apple shape.The experiment results demonstrate that the accuracy of the neural network is about 83.3% and the ASM method has good effect reaching as high as 95%.The matchin8 time between the model and the actual image does not surpass 2 sec.ASM has good visibility,high flexibility and strong robustness to satisfy the real-time graduation of apple.
Keywords:ASM  BP
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《食品科学》浏览原始摘要信息
点击此处可从《食品科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号