首页 | 本学科首页   官方微博 | 高级检索  
     


Low-power design techniques for high-performance CMOS adders
Authors:Uming Ko Balsara   T. Wai Lee
Affiliation:Texas Instrum. Inc., Dallas, TX;
Abstract:A high-performance adder is one of the most critical components of a processor which determines its throughput, as it is used in the ALU, the floating-point unit, and for address generation in case of cache or memory access. In this paper, low-power design techniques for various digital circuit families are studied for implementing high-performance adders, with the objective to optimize performance per watt or energy efficiency as well as silicon area efficiency. While the investigation is done using 100 MHz, 32 b carry lookahead (CLA) adders in a 0.6 μm CMOS technology, most techniques presented here can also be applied to other parallel adder algorithms such as carry-select adders (CSA) and other energy efficient CMOS circuits. Among the techniques presented here, the double pass-transistor logic (DPL) is found to be the most energy efficient while the single-rail domino and complementary pass-transistor logic (CPL) result in the best performance and the most area efficient adders, respectively. The impact of transistor threshold voltage scaling on energy efficiency is also examined when the supply voltage is scaled from 3.5 V down to 1.0 V
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号